apollon.som.som module¶
-
class
apollon.som.som.
DotSom
(dims=(10, 10, 3), eta=0.8, nh=8, n_iter=10, metric='euclidean', mode=None, init_distr='uniform', seed=None)¶ Bases:
apollon.som.som._som_base
-
fit
(data, verbose=True)¶
-
get_winners
(data, argax=1)¶ Get the best matching neurons for every vector in data.
Parameters: - data – Input data set
- argax – Axis used for minimization 1=x, 0=y.
Returns: Indices of bmus and min dists.
-
-
class
apollon.som.som.
SelfOrganizingMap
(dims=(10, 10, 3), eta=0.8, nh=5, n_iter=100, metric='euclidean', mode='incremental', init_distr='simplex', seed=None)¶ Bases:
apollon.som.som._som_base
-
fit
(data, verbose=False)¶ Train the SOM on the given data set.
-
predict
(data)¶ Predict a class label for each item in input data. SOM needs to be calibrated in order to predict class labels.
-
train_batch
(data, verbose=False)¶ - Feed the whole data set to the network and update once
- after each iteration.
Parameters: - data – Input data set.
- verbose – Print verbose messages if True.
-
train_incremental
(data, verbose=False)¶ - Randomly feed the data to the network and update after each
- data item.
Parameters: - data – Input data set.
- verbose – Print verbose messages if True.
-
train_minibatch
(data, verbose=False)¶
-